A hybrid RNN-GPOD surrogate model for real-time settlement predictions in mechanised tunnelling
نویسندگان
چکیده
Realistic 3D simulations of the tunnelling process are increasingly required to investigate the interactions between machine-driven tunnel construction and the surrounding soil in order to provide reliable estimates of the expected settlements and associated risks of damage for existing structures, in particular in urban tunnelling projects. To accomplish the step from large-scale computational analysis to real-time predictions of expected settlements during tunnel construction, the focus of this paper is laid on the generation of a numerically efficient hybrid surrogate modelling strategy, combining Gappy proper orthogonal decomposition (GPOD) and recurrent neural networks (RNN). In this hybrid RNN-GPOD surrogate model, the RNN is employed to extrapolate the time variant settlements at several monitoring points within an investigated surface area and GPOD is utilised to predict the whole field of surface settlements based on the RNN predictions and a POD radial basis functions approximation. Both parts of the surrogate model are created based on results of finite element simulations from geotechnical and process parameters varied within the range of intervals given in the design stage of a tunnel project. In the construction stage, the hybrid surrogate model is applied for real-time reliability analyses of the mechanised tunnelling process to support the machine operator in steering the tunnel boring machine.
منابع مشابه
Real Time Pseudo-Range Correction Predicting by a Hybrid GASVM model in order to Improve RTDGPS Accuracy
Differential base station sometimes is not capable of sending correction information for minutes, due to radio interference or loss of signals. To overcome the degradation caused by the loss of Differential Global Positioning System (DGPS) Pseudo-Range Correction (PRC), predictions of PRC is possible. In this paper, the Support Vector Machine (SVM) and Genetic Algorithms (GAs) will be incorpor...
متن کاملEstimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کاملEstimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کاملIntraday Liquidity Demand of Banks in Real-Time Gross Settlement System
In this study a simulation analysis is applied to address the change in banks liquidity demand due to a shift in settlement method brought about by adopting Real Time Gross Settlement System. At the first stage of this research, we use a data generator model along with some information on the time distribution of coded cheques over a working day in order to produce intraday flow of payment...
متن کاملNumerical modeling of tunneling induced ground deformation and its control
Tunnelling through cities underlain by soft soil, commonly associated with soil movement around the tunnels and subsequent surface settlement. The predication of ground movement during the tunnelling and optimum support pressure could be based on analytical, empirical or the numerical methods. The commonly used Earth pressure balance (EPB) tunneling machines, uses the excavated soil in a pressu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Model. and Simul. in Eng. Sciences
دوره 3 شماره
صفحات -
تاریخ انتشار 2016